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ABSTRACT

Modeling a Par allel Discrete Event Simulation to provideresear ch into the execution of awar game
over multiple processors presents many challenges. Next generation war games arelikely to execute
over abillion events, requiring several daysto complete on a single processor. Through the use of
multiple processor sand advanced time management algorithms, the goal to run war games much
faster than real timeisareality. Thispaper providesan overview of research at the Joint National
Test Facility using SES'workbench® to model awar game distributed over multiple processors. A
brief history of preliminary modelsisgiven. Comparative results of these different modelsare given
which show the accuracy of the preliminary models. Two modelswer ethen adapted to emulate the
anticipated computing load for War Game 2000 and thetiming algorithmsused in the Synchronous
Parallel Environment for Emulation and Discrete Event Simulation framework that arethemain
focus of thispaper. Onemodel described istransaction based and the other isdata resour ce based.
Advantages and disadvantages of the two modeling paradigms ar e discussed throughout the paper.
Specific techniques used in these modelsare described in detail and show the adaptability of the
sequential SES/workbench tool to model a parallel discrete event simulation. We have modeled the
current command and control simulation using detailed data on processor and communications
resource usage. A model of the new war game under development has also been constructed and
calibrated. Timemanagement algorithms have been prototyped. This“sim of asm” ispoised to
reducerisk for development of current and futurewar games.

I ntroduction

The Parallel Discrete Event Simulation (PDES) environment presents many challengesin modeling. The
Joint National Test Facility (JNTF) iswell known for itswar game facilities. The Technology Insertion
Studies and Analysis (TISA) group has been tasked to support War Game 2000 (WG2K) development.
Onetask isto model the next generation war games with SES/workbencha (SESWB) by emulating the
message traffic (several hundred thousand to possibly a billion messages) over multiple processors without
violating causality. A second task isto use the SESWB tool to determine what hardware will provide the
best performance for WG2K. We are currently building WG2K using the Synchronous Parallel
Environment for Emulation and Discrete Event Simulation (SPEEDES) framework to control the
synchronization process. SPEEDES uses the Breathing Time Warp agorithm to achieve this
synchronization. Breathing Time Warp is acombination of two optimistic synchronizing algorithms, Time
Warp (Jefferson 1985) and Breathing Time Buckets (Steinman 1991).



Preliminary stepsto building a PDES model included building a calibrated Advanced Real-time Gaming
Universal Simulation (ARGUS) Maodel, a parameterized Threat Load Model, an aggregated WG2K Model,
and a SPEEDES Model. The ARGUS Model showed that an existing war-game scenario could be modeled
accurately (within 10%) with SESWB. The Threat Load Model demonstrated how events could be
spawned from other events (i. e. missiles dropping boosters or launching Re-entry Vehicles (RV’s)). The
aggregated WG2K Model provided arepresentation of anot yet existing WG2K at the early block 10 stage.
The SPEEDES Model was constructed to alow full representation of SPEEDES queuing and event
synchronization algorithms.

By modeling WG2K with the SPEEDES framework along with other hardware architectures, we have the
opportunity to measure performance speedup without running tests on the actual hardware represented in
themodel. The purpose of this paper isto describe the progress and specific techniques used to model the
WG2K message traffic and the SPEEDES framework with both the transaction and data resource based
paradigms.

M ethods

Theinitial effort was to emulate the message traffic generated by an ARGUS scenario with a Commercial
Off the Shelf (COTS) product, SES/workbench® . Statistics were captured from the ARGUS run and used
as cdibration data for the SESWB and Thread Builder (TB) ARGUS models. Comparative statistics
included number of missiles, re-entry vehicles, interceptors, and the frequency and number of messages
sent between objects. The ARGUS Model provided an opportunity to learn some of the capabilities of
SESWB (multi-module model, routing, etc.) and techniques that became very valuable for the eventual
WG2K Modd.

A Threat Load Mode! then provided an opportunity to see how the load expands with different scenario
combinations. Again, SESWB and TB models were created to compare with each other and the Excel®
scenario spreadsheet listing objects and timing predictions. The SESWB model is parameterized to alow
for back-to-back runs of different scenarios without requiring the model be rebuilt for each run. This
model has been implemented as the threat |oad object for the aggregated WG2K Modédl.

Creation of the SESWB Aggregated WG2K Model allowed for afirst look at potential bottleneck problems
such asthe Host Router and gateways. The Threat Load Model was re-used as the main module for the
multi-module WG2K Model (Figurel). The model is segmented to represent the various numbers of
instances for missile and radar objects. SESWB allows great flexibility for creating multiple instances of
an object (or submodel) and passing on changes made in the original instantiation of the object. All of the
instances inherit those changes when the model is built, thus saving much time when changes are made.

M essage passing between separate modules is necessary to allow greater flexibility and provides amore
realistic representation of objects outside the main simulation module (MADSIM) for the projected WG2K.

Since atypical war game includes much human interaction, the simulation models an estimate of probable
responses and the time anticipated for making those responses. In the current WG2K model, the Battle
Management Command, Control, & Communications (BMC3) initiates many messages on a periodic basis
and some on an irregular basis to emulate human input. The irregular messages are usually responsesto the
spawning of different scenario events such asmissile launches. In SESWB, this requires a broadcast of
these eventsto all submodelsthroughout the model since some submodels message number or size
depended on this information.
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Figure 1: The Aggregated WG2K Model - The WG2K_L aunch main module was a copy of the Threat Load
Model with additional functionality added. Space-Based InfraRed System (SBIRS), Battle Management Command,
Control & Communications (BMC3 - battle_mod), and the Host Router were in separate modules to show that they
were not a part of MADSIM which represents all sensors.

The magjor problem associated with the WG2K model is the routing of messages to specific instances of
objects. Being amulti-module, multi-instance model, this requires some advanced techniquesto send
information to or retrieve information from distant submodels. Some messages are sent through a host
router (Figure2 & 3) or agateway to al instances of an object, while other messages are only be sent to a
specific instance of an object. All of these problems are associated with the war game environment here at
the INTF. Various enhancements have been implemented as aresult of these early models.
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Figure 2: Host Router (transaction based)— Representation of the host router and network communications.



Note that the data resource model (Figure 3) transfers the message to the processor (tempQ resource) and
then receives the processed message at get. HR_proc_in_msgs. Therest of the sequenceisthe same except
the data resources are transferred into a resource box instead of directly routing the transaction.
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Figure 3: Host Router (data resour ce based)— Representation of the host router and network communications.

Since WG2K has chosen the SPEEDES framework to distribute our war game over multiple processors for
maximum speedup, a separate SPEEDES Model was built to allow for the different queuing and timing
methods incorporated within SPEEDES. Modeling of the SPEEDES framework proved to be quite
challenging due to the queuing and timing algorithms used within SPEEDES. Following isabrief
description of the more important parts of SPEEDES modeled with SESWB.

SPEEDES assigns object processes to processors at the beginning of the simulation. A SESWB card ded
model was developed to realistically represent this function. To represent the same distribution asa Thread
Builder run, one must be certain that the objects are assigned in the same order as the spreadsheet input
used with Thread Builder. Note that the only balancing used here is the number of objects per processor.
No load balancing occurs due to number of messages or message sizes being sent.

The paralel computing strategies used in SPEEDES begin with the Time Warp agorithm. Time Warp uses
the virtual time’® paradigm first developed by Jefferson in 1985. This paradigm represents an optimistic
approach to organize and synchronize distributed systems. Since causality (you can’t send a message in the
past) is very relevant in war gaming, this presents a problem of major importance. The system can not be
allowed to violate causality, but should be alowed to run ahead of wall clock time. This paradigm uses
anti-messages to rollback time and cancel messages that were processed and sent optimistically with atime
ahead of Global Virtua Time (GVT) that correspondsto the earliest time stamp of any message in the
simulation.

To keep the separate processors from “running away” from the rest of the system, two timing elements are
used. A global clock (Figure 4) keepsthe systems GVT and each processor keeps track of it's own Local
Virtual Time (LVT). SPEEDES uses a set of flow control variables to notify the system when it istimeto
update GVT. GVT will be updated periodically if a certain amount of time (tgvt) has passed without a
GVT update caused by some other factor. Keeping track of messages (events) processed also causes GVT
updates. SPEEDES allows all messages with atime stamp lessthan GVT to be processed and sent



immediately. A set number of Nrisk messages (messages with atime stamp > GVT) are also alowed to be
processed, but a copy of these messagesiskept until aGVT update occurs. After aset number of messages
are processed and sent from a processor, that processor notifies the system that it thinks GV T should be
updated. After al processors have voted to update GV T, the system interrupts al processors and waits for
all sent messages to be flushed from the communications network. The system then checks each of the
processors LVT and updates GV T to the earliest LVT. This meant that the SESWB model needs each
rocessor instance keep track of its own set of variables.
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Figure4: The Global Clock — This submodel periodically cycles through the queue_timer. If it istime to update
GVT or al processors have voted to update GVT, the system: (1) interrupts al processing at interrupt_to_sync_GVT,
(2) waits for al messages to be flushed from the communications system, and then (3) decides what GV T should be
updated to (the earliest LVT) at change GVT.

The queuing system used in SPEEDES a so presents some unique problems. Each processor requires two
ordered queues, atemporary queue and a Qheap. SPEEDES actually has a Qheap for each object assigned
to the processor, but for simplicity sake, only one Qheap isin the current SESWB model. Both queues
require amerge sort routine to order the messages by their time stamp upon arrival. SESWB makes this
simpleto create through the use of multiple instances of an object, but the communication of variable
valuesin different instances does become quite complex.

The temporary queue (Figur e 5) requires the ability to check each incoming message time stamp.
Messages that are in the correct timing sequence are added to the end of the queue. Due to a requirement
of SPEEDES to know the time stamp of the first message in the temporary queue, adouble block is
necessary to separate the first message from the rest of the queue. Incoming messages are blocked once a
straggler message (an out of sequence message) arrives at the temporary queue that causesit to be
reordered. A straggler message requires all messagesin the queue be looped through in the tempQ_merge
submodel (Figure6) to determine the correct position to insert the straggler message. After the messages
have been reordered the messages are reentered into the temporary queue and the blocked incoming
messages are then released to enter the temporary queue.
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Figure5 (transaction based): The Temporary Queue— An arriving message has its time checked at
check_order. If the message has atime greater than the last message in the temporary queue, the message becomes the
last in the queue. Otherwise, the message sets a block condition at block_to_sort and then proceeds to the
merge_to_tempQ submodel along with all messages in the temporary queue (includes messages at release_one) to
allow the new message to be merged into the correct position. Messages return to the temp_Queue submodel after they



are placed in the correct order and are blocked at wait_for_sort. After all messages have returned, they are then
returned to the temporary queue and any message at the block_to_sort node is released sequentially.
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Figure6 (transaction based): Merging into the Temporary Queue— An arriving straggler message hasiits
time compared with messages already in the temporary queue. All messages are then returned to the temporary queue
in the correct order by time stamp.

The two submodelsin Figures 5 & 6 are combined in the data resource based model’ s temp_queue (Figure
7). Notethat no blocking is required when a messagefirst arrivesin the submodel because thereisonly
one transaction populated in the submodel at msg_arrives, which therefore automatically providesa
blocking condition. The amount of coding for the data resource submodel is much lessthan the
transaction-based submodel. Thisversion of the temporary queue has the functionality of comparing the
incoming message time stamp with that of the first messagein the queue. If theincoming message needsto
be placed in the front, all messages are moved down one position in the temporary queue without
comparing each time stamp and the incoming message is placed at the front of the queue. Theloop for
inserting amessage in the middle of the temporary queue avoids having to sort through the rest of the
messages after the position for the incoming message has been found.

There are two conditions that result in the temporary queue being merged with the QHeap. Thefirst
condition involves a parameter for the maximum capacity set for the temporary queue size. Oncethisvaue
isreached, all messagesin the temporary queue are then merged into the QHeap. The second condition
occursif the temporary queue has been idle for aset amount of time that is monitored by the Global Clock.
This passage of time a so causes amerge of the two queues.

Thisisbasicaly the same as the transaction based paradigm with the exception that afull temporary queue
isadded directly to the QHeap if the first temporary queue message timeis greater than the last QHeap
message time. Once again this avoids having to loop through all of the QHeap messages unless the two
gueues need to be merged. If the two need to be merged, the temporary queue is dumped into a
temp_QHeap resource to merge together with the QHeap.
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Figure 7 (data resour ce based): The Temporary Queue— Messages are entered into the temporary queue one
at atime, either at the end, in the middle, or at the front. Once the temporary queue is full, those message are added
either to the end of the QHeap or placed in atemp_QHeap resource to be merged with messages in the QHeap.

Once the temporary queueisfull, the temporary queue messages must be merged into the correct order
with the QHeap (Figure 8 & 9) messagesto wait for processing. Messages are released to the
block_tempQ or block QHeap nodes one at atime. The earlier time stamped message then advancesto the
wait_for_finish node. Thisprocessis repeated until all messages have been merged together. A dight
delay isimplemented before the messages are returned to the QHeap. Once again a double block
mechanism (hold_queue and wait_for_merge) was required to allow the first message of the queueto be
separated from the rest of the messagesin the QHeap. The data resource model has the advantage of
reusing the main body of the temporary queue with a change for the data resources being accessed.
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Figure 8 (transaction based): The QHeap — The merging of the two queues requires a comparison of one
message from each queue at atime. The earlier message is released at either block_tempQ or block_Qheap. The first
message in the Qheap waits for the processor at the wait_for_merge node.
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Figure9 (dataresour ce based): The QHeap — The merging of the two separate queues provides reuse of the
same sequence used in the temporary queue uses.

When a processor becomes available, it needsto allow the next ordered message to enter either from the
temporary queue or the QHeap. This situation presents an interesting problem because the processor needs
to check both itstemporary queue and its QHeap to decide which message had the earliest time stamp. A
double block mechanism (release_one and temp_queue for the temporary queue) is required in SESWB to
solve this problem in the transaction-based paradigm. By separating the first message in each queue from
therest of the queue, the processor only looks at the first message time of each queue (since the queues are
already ordered) and decides which message should access the processor next. After the sel ected message
enters the processor, the queue that rel eased that message must move the next ordered message up to the
first block node.



SPEEDES uses flow control parameters to determine the phase that Breathing Time Warpisin (Figure
10). The model functionsin norma mode when messages arrive at the processor with atime stamp less
than GVT. When messages arrive with atime stamp greater than GV T and the number of Nrisk_msgsis
less than Nrisk_max (maximum number of optimistically processed and sent messages), SPEEDES enters
the Time Warp phase. Once the number of Nrisk_msgs equals Nrisk_max, SPEEDES movesto the
Breathing Time Buckets phase. Either after all processors have asked for aGVT update or a certain
amount of time has elapsed, the GV T phase begins. All processors are interrupted and wait for al
messages in transit to arrive at their destinations. Nrisk message copies are then cleared and then Nopt
messages are committed and sent.

Event Synchronization for the Breathing Time Warp Algorithm

|:| TimeWarp |:| GVT - Spin Busy

I:I Breathing Time Buckets -Flush Msgs I:l Commit

Normal SPEEDES Cycle (0.1 -- 1.0 Sec)

*Time Warp - Fully Optimistic Processing but Risky (Can Cause rollbacks) Nrisk_msgs
*Breathing Time Buckets -- Optimistic but Risk-free Nopt_msgs

*GVT -- Quasi-periodic Update of Simulation Time -- Sets Extent of Rollback Into Past
*Message Flush -- Synchronization of Message Queues for Causality

*Spin Busy - Nopt_max total surpassed, wait for GVT update

«Commit -- Flush Rollback Buffers of Old Copies of Events

Figure 10: Event Synchronization for the Breathing TimeWarp Algorithm



Messages routing in the processor (Figure 11 & 12) show additional paths besidesthosethat are
determined by the Breathing Time Warp phase. Since copies are only needed for outgoing messages, the
incoming csc messages are processed and returned without copies being made. Each anti-message is sent to
the processor that received the original optimistically processed message and label s that message canceled
in the temporary queue, QHeap, or the processor where it resides. That message is then removed from the
system when it tries to access the processor.
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Figure 11 (transaction based): The Processor Node —Messages are selected from the temporary queue or
QHeap by their time stamp order if aresource token is available. Messages enter the processor, receive the resource
token, and are then processed at process_event. If a GVT update occurs, the message is interrupted and then blocked
until the GVT is updated. An uninterrupted message leaves the process_events node, releases its token, and checks the
first messages waiting in each queue at release_next_msg. The earlier of the two messages are then released to enter
the processor. These messages then have three possible paths to take, send messages that have a time stamp earlier or
equal to GVT, make a copy and send messages if the Nrisk_count is less than Nrisk, or store messages in Nopt_events
towait for aGVT update. If astraggler message arrives at the processor, an anti message is sent or a message at the
Nopt_events node is cancelled. The time stamp for the first message at Nrisk_queue is stored to determine if an anti-
message needs to be sent or a message at Nopt_events needs to be cancelled. If the straggler message time is less than
the first Nopt_events time, the Nrisk_queue is looped through to send an anti-message for any message sent with atime
stamp greater than the straggler message time. I the straggler message time is larger than the first Nopt_events time,
the Nopt_events are looped through to cancel any messages with atime stamp greater than the straggler message time.
NOTE: This model does not actually send anti-messages! It isonly simulated they are sent.
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Figure 12 (data resour ce based): The Processor Node — The next message is selected by comparing the time
stamp of the first message in each queue. Both loops are identical except the resource being accessed (reuse again). If
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the message is labeled canceled or as an anti-message, it is not sent on to another processor or copied. The bottom
loops are again nearly identical. The Nrisk portion send anti-messages or empties messages from Nrisk after aGVT
update. The Nopt portion cancels messages or sends them to the next processor after a GV T update.

Results

Both SESWB WG2K Models were calibrated to an Excel spreadsheet scenario and matched the results of
the Thread Builder Model and the predicted results of the spreadsheet. Both models provide an accurate
representation (within 10%) of predicted message traffic for WG2K asindicated by the current spreadsheet
analysis (Figure 13). Message traffic was monitored during the simulation run to watch potential
bottlenecks. A large part of the model is parameterized to allow greater flexibility in changing the scenario
script at run time. The host router correctly relays messages between objects. The model of the
communications network is parameterized to alow for inputsto represent different network architectures.
A parameter isaso included to alow for different speed processors.

CSC Estimate SES
BMS 64 64

RV 6,182 6,144
BMC3 216,706 222,360
SBIRS 2,659 2,724
IFICS 2,080 2,353
GBR 9,601 9,640
XBR 9,711 9,641
UEWR 291,300 287,346
*total 543,167 545,146

Figure 13: Calibration Results — This table represents the number of messages sent by some of the CSC's
(Computer Software Component) in WG2K. The estimate column was obtained from a spreadsheet analysis estimate
and the SES column shows the results from the SES WG2K model. *NOTE: This total includes other CSC's not listed.

The SESWB SPEEDES Mode accurately emulates the processes contained in the SPEEDES framework.
Parameters were implemented to allow the same flexibility that exists within SPEEDES. The queuing
theories are properly represented and both timing algorithms in Breathing Time Warp, Time Warp and
Breathing Time Buckets, were correctly implemented in the SESWB model. Experiments were run on the
separate SPEEDES model to validate the two causes for updating GVT, the passing of alimited amount of
time without an update or all processors ask for an update). Message times were scrambled to cause
straggler messages to arrive at the temporary queue and the processor. The queuing and interrupt functions
worked as expected. The functions for sending anti-messages or canceling of messages not already sent
due to the arrival of a straggler message both worked as expected.

Discussion

The ARGUS Model isasimulation of an already existing ARGUS simulation. Message traffic and the
scenario timing were successfully modeled. Individual and overall message totals were calibrated to within
10% (most were within 1%) based on the profile data generated from an actual simulation scenario. The
experience gained led to efficient smulation of the emerging WG2K scenario.

The WG2K Model represented the anticipated WG2K in advance of code development. This model was
based on anticipated functionality, estimated lines of code, and operational message sets. It was calibrated
to within 10% to the input spreadsheet and the results from the Thread Builder model.

Both the ARGUS and WG2K models allow us to demonstrate potential scalability to larger and faster

processing power. Communications were modeled to show potential speedup due to faster communication
links.
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The innovation was using SESWB, a sequential modeling tool, to model time management algorithmsfor a
PDES. In particular, the SPEEDES model represented the Breathing Time Warp agorithm used in
SPEEDES.

Although both modeling paradigms were capable of achieving the same results, the data resource paradigm
provide reuse of many concepts and much less coding required. Although memory usage (Figur e 14)
varied and does not appear to be a major factor, the transactions based model slowed considerably at sim
time 1680. Another important item to note is the data resource model had much more functionality added.
In particular was the addition of actually sending anti-messages in the data resource model that created an
added load on message traffic.  The transaction-based model only simulated sending the anti-messages.
Despitetheadded load, the data resour ce model was still 2.6 timesfaster than thetransactions-based
model!

Transaction vs. Data Resour ce Statistics

Sm Time Transaction-Based Mode Data Resour ce M odéel
Size Size

260 13 15
280 14 15
764 17 20
1680 20 20
1700 25 20
1720 27 20
1780 28 31
1800 30 31

Run Time=51:16 min Run Time = 19:35min

Took 1:06 to run 20 sim tics at 2.6 timesfaster!!!
one point!

Figure 14: Comparison Statistics
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